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Generalized Perron Cluster Cluster Analysis program to coarse-grain reversible and non-reversible Markov state mod-
els.

Markov state models (MSM) enable the identification and analysis of metastable states and related kinetics in a very
instructive manner. They are widely used, e.g., to model molecular or cellular kinetics. Common state-of-the-art
Markov state modeling methods and tools are very well suited to model reversible processes in closed equilibrium
systems. However, most are not well suited to deal with non-reversible or even non-autonomous processes of non-
equilibrium systems. To overcome this limitation, the Generalized Robust Perron Cluster Cluster Analysis (GPCCA or
G-PCCA) was developed. The GPCCA method implemented in the pyGPCCA program readily handles equilibrium as
well as non-equilibrium data by utilizing real Schur vectors instead of eigenvectors. pyGPCCA enables the semiauto-
matic coarse-graining of transition matrices representing the dynamics of the system under study. Utilizing pyGPCCA,
metastable states as well as cyclic kinetics can be identified and modeled.

Key Contributors

pyGPCCA graph | = maintainer

• Bernhard Reuter: lead developer

• Michal Klein: developer, diverse contributions

• Marius Lange: developer, diverse contributions
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CHAPTER

ONE

INSTALLATION

pyGPCCA requires Python >= 3.6 to run. If any problems arise, please consult the Troubleshooting section.

1.1 Methods

1.1.1 Conda

pyGPCCA is available as a conda package and can be installed as:

conda install -c conda-forge pygpcca

This is the recommended way of installing, since this package also includes PETSc/SLEPc libraries. We use
PETSc/SLEPc internally to speed up the computation of the leading Schur vectors. These are optional dependen-
cies - if they’re not present, we compute a full Schur decomposition instead and sort it using the method introduced by
Brandts (2002). Note that this scales cubically in sample number, making it essential to use PETSc/SLEPc for large
sample numbers. PETSc/SLEPc implement iterative methods to only compute the leading Schur vectors, which is
computationally much less expensive.

1.1.2 PyPI

In order to install pyGPCCA from The Python Package Index, run:

pip install pygpcca
# or with libraries utilizing PETSc/SLEPc
pip install pygpcca[slepc]

1.1.3 Development version

If you want to use the development version of pyGPCCA from GitHub, run:

pip install git+https://github.com/msmdev/pygpcca

3

https://anaconda.org/conda-forge/pygpcca
https://www.mcs.anl.gov/petsc/
https://slepc.upv.es/
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https://github.com/msmdev/pygpcca
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1.2 Troubleshooting

During the installation of petsc, petsc4py, slepc, and slepc4py, the following error(s) might appear:

ERROR: Failed building wheel for <package name>

However, this should be fine if in the end, it also outputs:

Successfully installed <package name>

To quickly verify that the packages have been installed, you can run:

python3 -c "import petsc4py; import slepc4py; print(petsc4py.__version__, slepc4py.__
→˓version__)"

1.2.1 Debian-based systems

Below are an alternative steps for installing PETSc/SLEPc, in case any problems arise, especially when installing from
PyPI:

# install dependencies
sudo apt-get update -y
sudo apt-get install gcc gfortran libopenmpi-dev libblas-dev liblapack-dev petsc-dev␣
→˓slepc-dev -y

# install a message passing interface for Python
pip install --user mpi4py

# install petsc and and petsc4py
pip install --user petsc
pip install --user petsc4py

# install slepc and slepc4py
pip install --user slepc
pip install --user slepc4py

1.2.2 macOS

The most robust way is to follow the PETSc installation guide and the SLEPc installation guide or to take a look at our
continuous integration steps for macOS.

The installation steps can be roughly outlined as:

# install dependencies
brew install gcc open-mpi openblas lapack arpack

# follow the PETSc installation steps
# follow the SLEPc installation steps

# install petsc4py
pip install --user petsc4py

(continues on next page)
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https://www.mcs.anl.gov/petsc/
https://slepc.upv.es/
https://www.mcs.anl.gov/petsc/documentation/installation.html
https://slepc.upv.es/documentation/instal.htm
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(continued from previous page)

# install slepc4py
pip install --user petsc4py

1.2. Troubleshooting 5
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CHAPTER

TWO

API

pyGPCCA can be imported as:

import pygpcca as gp

2.1 Functions

pygpcca.stationary_distribution() Compute stationary distribution of stochastic matrix P.
pygpcca.gpcca_coarsegrain(P, m[, eta, z, method]) Coarse-grain the transition matrix P into m sets using

G-PCCA [Reuter18], [Reuter19].

2.1.1 pygpcca.stationary_distribution

pygpcca.stationary_distribution(P)
pygpcca.stationary_distribution(P)
pygpcca.stationary_distribution(P)

Compute stationary distribution of stochastic matrix P.

Parameters P (Union[ndarray, spmatrix]) – The transition matrix (row-stochastic).

Return type ndarray

Returns Vector of stationary probabilities.

Notes

The stationary distribution 𝜋 is the left eigenvector corresponding to the non-degenerate eigenvalue 𝜆 = 1 of a
reversible transition matrix 𝑃 ,

𝜋𝑇𝑃 = 𝜋𝑇 .

7

https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
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References

The code and docstring of this function origins (with some adjustments) from MSMTools, Copyright (c) 2015,
2014 Computational Molecular Biology Group, Freie Universitaet Berlin (GER).

2.1.2 pygpcca.gpcca_coarsegrain

pygpcca.gpcca_coarsegrain(P, m, eta=None, z='LM', method='brandts')
Coarse-grain the transition matrix P into m sets using G-PCCA [Reuter18], [Reuter19].

Performs optimized spectral clustering via G-PCCA and coarse-grains P such that the dominant Perron eigen-
values are preserved using:

𝑃𝑐 = (𝜒𝑇𝐷𝜒)−1(𝜒𝑇𝐷𝑃𝜒)

with 𝐷 being a diagonal matrix with eta on its diagonal [Reuter18], [Reuter19].

Parameters

• P (Union[ndarray, spmatrix]) – The transition matrix (row-stochastic).

• m (Union[int, Tuple[int, int], List[int], Dict[str, int]]) – The number of clusters or
a range where a search for potentially optimal cluster numbers is performed. Valid options
are:

– int: number of clusters to group into.

– tuple: minimal and maximal number of clusters.

– dict: minimal and maximal number of clusters given as {'m_min': int, 'm_max':
int}.

• eta (Optional[ndarray]) – The input probability distribution of the (micro)states. In the-
ory eta can be an arbitrary distribution as long as it is a valid probability distribution (i.e.,
sums up to 1). A neutral and valid choice would be the uniform distribution (default).

In case of a reversible transition matrix, the stationary distribution can (but don’t has to) be
used here. In case of a non-reversible P, some initial or average distribution of the states
might be chosen instead of the uniform distribution.

Vector of shape (n,) which sums to 1. If None (default), uniform distribution is used.

• z (str) – Specifies which portion of the eigenvalue spectrum of P is to be sought. The
returned invariant subspace of P will be associated with this part of the spectrum. Valid
options are:

– ’LM’: largest magnitude (default).

– ’LR’: largest real part.

• method (str) – Which method to use to determine the invariant subspace. Valid options
are:

– ’brandts’: perform a full Schur decomposition of P utilizing scipy.linalg.schur()
(without the intrinsic sorting option, since it is flawed) and sort the returned Schur form R
and Schur vector matrix Q afterwards using a routine published by Brandts [Brandts02].
This is well tested and thus the default method, although it is also the slowest choice.

– ’krylov’: calculate an orthonormal basis of the subspace associated with the m dominant
eigenvalues of P using the Krylov-Schur method as implemented in SLEPc. This is the
fastest choice and especially suitable for very large P, but it is still experimental.

8 Chapter 2. API

https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.schur.html#scipy.linalg.schur
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See the installation instructions for more information.

Return type ndarray

Returns The coarse-grained row-stochastic transition matrix.

References

If you use this code or parts of it, please cite [Reuter19].

2.2 Classes

pygpcca.GPCCA(P[, eta, z, method]) G-PCCA spectral clustering method with optimized
memberships [Reuter18], [Reuter19].

2.2.1 pygpcca.GPCCA

class pygpcca.GPCCA(P, eta=None, z='LM', method='brandts')
G-PCCA spectral clustering method with optimized memberships [Reuter18], [Reuter19].

Clusters the dominant m Schur vectors of a transition matrix.

This algorithm generates a fuzzy clustering such that the resulting membership functions are as crisp (character-
istic) as possible.

Parameters

• P (Union[ndarray, spmatrix]) – The transition matrix (row-stochastic).

• eta (Optional[ndarray]) – The input probability distribution of the (micro)states. In the-
ory eta can be an arbitrary distribution as long as it is a valid probability distribution (i.e.,
sums up to 1). A neutral and valid choice would be the uniform distribution (default).

In case of a reversible transition matrix, the stationary distribution can (but don’t has to) be
used here. In case of a non-reversible P, some initial or average distribution of the states
might be chosen instead of the uniform distribution.

Vector of shape (n,) which sums to 1. If None, uniform distribution is used.

• z (str) – Specifies which portion of the eigenvalue spectrum of P is to be sought. The
returned invariant subspace of P will be associated with this part of the spectrum. Valid
options are:

– ’LM’: largest magnitude (default).

– ’LR’: largest real part.

• method (str) – Which method to use to determine the invariant subspace. Valid options
are:

– ’brandts’: perform a full Schur decomposition of P utilizing scipy.linalg.schur()
(without the intrinsic sorting option, since it is flawed) and sort the returned Schur form R
and Schur vector matrix Q afterwards using a routine published by Brandts [Brandts02].
This is well tested and thus the default method, although it is also the slowest choice.

2.2. Classes 9

https://pygpcca.readthedocs.io/en/latest/installation.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Union
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix
https://docs.python.org/3/library/typing.html#typing.Optional
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https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
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– ’krylov’: calculate an orthonormal basis of the subspace associated with the m dominant
eigenvalues of P using the Krylov-Schur method as implemented in SLEPc. This is the
fastest choice and especially suitable for very large P, but it is still experimental.

See the installation instructions for more information.

References

If you use this code or parts of it, please cite [Reuter19].

Methods

minChi(m_min, m_max) Calculate the minChi indicator (see [Reuter18]) for
every 𝑚 ∈ [𝑚𝑚𝑖𝑛,𝑚𝑚𝑎𝑥].

optimize(m) Full G-PCCA spectral clustering method with opti-
mized memberships [Reuter18], [Reuter19].

pygpcca.GPCCA.minChi

GPCCA.minChi(m_min, m_max)
Calculate the minChi indicator (see [Reuter18]) for every 𝑚 ∈ [𝑚𝑚𝑖𝑛,𝑚𝑚𝑎𝑥].

The minChi indicator can be used to determine an interval 𝐼 ⊂ [𝑚𝑚𝑖𝑛,𝑚𝑚𝑎𝑥] of good (potentially optimal)
numbers of clusters.

Afterwards either one 𝑚 ∈ 𝐼) or the whole interval 𝐼 is chosen as input to optimize() for further opti-
mization.

Parameters

• m_min (int) – Minimal number of clusters to group into.

• m_max (int) – Maximal number of clusters to group into.

Return type List[float]

Returns List of minChi indicators for cluster numbers 𝑚 ∈ [𝑚𝑚𝑖𝑛,𝑚𝑚𝑎𝑥], see [Roeblitz13],
[Reuter18].

pygpcca.GPCCA.optimize

GPCCA.optimize(m)
Full G-PCCA spectral clustering method with optimized memberships [Reuter18], [Reuter19].

It also has the option to optimize the number of clusters (macrostates) m as well.

If a single integer m is given, the method clusters the dominant m Schur vectors of the
transition_matrix. The algorithm generates a fuzzy clustering such that the resulting membership
functions chi are as crisp (characteristic) as possible, given m.

Instead of a single number of clusters m, a tuple or a dict {'m_min': int, 'm_max': int} containing
a minimum and a maximum number of clusters can be given. This results in repeated execution of the G-
PCCA core algorithm for 𝑚 ∈ [𝑚𝑚𝑖𝑛,𝑚𝑚𝑎𝑥]. Among the resulting clusterings, the sharpest/crispest one
(with maximal crispness) will be selected.
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https://pygpcca.readthedocs.io/en/latest/installation.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
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https://docs.python.org/3/library/functions.html#float
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Parameters m (Union[int, Tuple[int, int], List[int], Dict[str, int]]) – The number of
clusters or a range where a search for potentially optimal cluster numbers is performed. Valid
options are:

• int: number of clusters to group into.

• tuple: minimal and maximal number of clusters.

• dict: minimal and maximal number of clusters given as {'m_min': int, 'm_max':
int}.

See minChi() for selection of good (potentially optimal) number of clusters.

Return type GPCCA

Returns

Returns self and updates the following attributes:

• coarse_grained_input_distribution

• coarse_grained_stationary_distribution

• coarse_grained_transition_matrix

• crispness_values

• dominant_eigenvalues

• input_distribution

• macrostate_assignment

• macrostate_sets

• memberships

• n_m

• optimal_crispness

• rotation_matrix

• schur_matrix

• schur_vectors

• stationary_probability

• top_eigenvalues

• transition_matrix

Attributes

coarse_grained_input_distribution Coarse grained input distribution of shape (n_m,).
coarse_grained_stationary_probability Coarse grained stationary distribution of shape

(n_m,).
coarse_grained_transition_matrix Coarse grained transition matrix of shape (n_m,

n_m).
crispness_values Vector of crispness values for clustering into the re-

quested cluster numbers.
dominant_eigenvalues Dominant n_m eigenvalues of P.

continues on next page
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https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
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https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
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Table 4 – continued from previous page
input_distribution Input probability distribution of the (micro)states.
macrostate_assignment Crisp clustering using G-PCCA.
macrostate_sets Crisp clustering using G-PCCA.
memberships Array of shape (n, n_m) containing the membership

𝜒𝑖𝑗 (or probability) of each microstate 𝑖 (to be as-
signed) to each macrostate or cluster 𝑗.

n_m Optimal number of clusters or macrostates to group
the n microstates into.

optimal_crispness Crispness for clustering into n_m clusters.
rotation_matrix Optimized rotation matrix 𝐴.
schur_matrix Ordered top left part of shape (n_m, n_m) of the real

Schur matrix of 𝑃 .
schur_vectors Array 𝑄 of shape (n, n_m) with n_m sorted Schur

vectors in the columns.
stationary_probability Stationary probability distribution 𝜋 of the mi-

crostates.
top_eigenvalues Top m respective m_max eigenvalues of P.
transition_matrix Row-stochastic transition matrix P.

pygpcca.GPCCA.coarse_grained_input_distribution

property GPCCA.coarse_grained_input_distribution: Optional[numpy.ndarray]
Coarse grained input distribution of shape (n_m,).

𝜂𝑐 = 𝜒𝑇 𝜂

Return type Optional[ndarray]

pygpcca.GPCCA.coarse_grained_stationary_probability

property GPCCA.coarse_grained_stationary_probability: Optional[numpy.ndarray]
Coarse grained stationary distribution of shape (n_m,).

𝜋𝑐 = 𝜒𝑇𝜋

Return type Optional[ndarray]

pygpcca.GPCCA.coarse_grained_transition_matrix

property GPCCA.coarse_grained_transition_matrix: Optional[numpy.ndarray]
Coarse grained transition matrix of shape (n_m, n_m).

𝑃𝑐 = (𝜒𝑇𝐷𝜒)−1(𝜒𝑇𝐷𝑃𝜒)

with 𝐷 being a diagonal matrix with 𝜂 on its diagonal.

Return type Optional[ndarray]
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https://docs.python.org/3/library/typing.html#typing.Optional
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
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pygpcca.GPCCA.crispness_values

property GPCCA.crispness_values: Optional[numpy.ndarray]
Vector of crispness values for clustering into the requested cluster numbers.

The crispness 𝜉 ∈ [0, 1] quantifies the optimality of the solution (higher is better). It characterizes how crisp
(sharp) the decomposition of the state space into m clusters is. It is given via (Eq. 17 from [Roeblitz13]):

𝜉 = (𝑚− 𝑓𝑜𝑝𝑡)/𝑚 = trace(𝑆)/𝑚 = trace(𝐷̃𝜒𝑇𝐷𝜒)/𝑚

with 𝐷 being a diagonal matrix with 𝜂 on its diagonal.

Return type Optional[ndarray]

pygpcca.GPCCA.dominant_eigenvalues

property GPCCA.dominant_eigenvalues: Optional[numpy.ndarray]
Dominant n_m eigenvalues of P.

Vector of shape (n_m,) containing the n_m dominant eigenvalues of P.

Return type Optional[ndarray]

pygpcca.GPCCA.input_distribution

property GPCCA.input_distribution: numpy.ndarray
Input probability distribution of the (micro)states.

In theory 𝜂 can be an arbitrary distribution as long as it is a valid probability distribution (i.e., sums up to
1). A neutral and valid choice would be the uniform distribution (default).

In case of a reversible transition matrix, the stationary distribution 𝜋 can (but don’t has to) be used here. In
case of a non-reversible P, some initial or average distribution of the states might be chosen instead of the
uniform distribution.

Vector of shape (n,) which sums to 1.

Return type ndarray

pygpcca.GPCCA.macrostate_assignment

property GPCCA.macrostate_assignment: Optional[numpy.ndarray]
Crisp clustering using G-PCCA.

This is recommended only for visualization purposes. You cannot compute any actual quantity of the
coarse-grained kinetics without employing the fuzzy memberships!

Return type Optional[ndarray]

Returns Integer vector of shape (n,) containing the macrostate each microstate is located in.

2.2. Classes 13

https://docs.python.org/3/library/typing.html#typing.Optional
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
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References

The code and docstring of this property origins (with some adjustments) from MSMTools, Copyright (c)
2015, 2014 Computational Molecular Biology Group, Freie Universitaet Berlin (GER).

pygpcca.GPCCA.macrostate_sets

property GPCCA.macrostate_sets: Optional[List[numpy.ndarray]]
Crisp clustering using G-PCCA.

This is recommended only for visualization purposes. You cannot compute any actual quantity of the
coarse-grained kinetics without employing the fuzzy memberships!

Return type Optional[List[ndarray]]

Returns

A list of length equal to n_m .

Each element is an array with microstate indexes contained in it.

References

The code and docstring of this property origins (with some adjustments) from MSMTools, Copyright (c)
2015, 2014 Computational Molecular Biology Group, Freie Universitaet Berlin (GER).

pygpcca.GPCCA.memberships

property GPCCA.memberships: Optional[numpy.ndarray]
Array of shape (n, n_m) containing the membership𝜒𝑖𝑗 (or probability) of each microstate 𝑖 (to be assigned)
to each macrostate or cluster 𝑗.

The rows sum to 1.

Return type Optional[ndarray]

pygpcca.GPCCA.n_m

property GPCCA.n_m: Optional[int]
Optimal number of clusters or macrostates to group the n microstates into.

Return type Optional[int]

pygpcca.GPCCA.optimal_crispness

property GPCCA.optimal_crispness: Optional[float]
Crispness for clustering into n_m clusters.

The crispness 𝜉 ∈ [0, 1] quantifies the optimality of the solution (higher is better). It characterizes how crisp
(sharp) the decomposition of the state space into m clusters is. It is given via (Eq. 17 from [Roeblitz13]):

𝜉 = (𝑚− 𝑓𝑜𝑝𝑡)/𝑚 = trace(𝑆)/𝑚 = trace(𝐷̃𝜒𝑇𝐷𝜒)/𝑚

with 𝐷 being a diagonal matrix with 𝜂 on its diagonal.

Return type Optional[float]
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pygpcca.GPCCA.rotation_matrix

property GPCCA.rotation_matrix: Optional[numpy.ndarray]
Optimized rotation matrix 𝐴.

Array of shape (n_m, n_m) which rotates the dominant Schur vectors to yield the G-PCCA memberships,
i.e. 𝜒 = 𝑋𝐴.

Return type Optional[ndarray]

pygpcca.GPCCA.schur_matrix

property GPCCA.schur_matrix: Optional[numpy.ndarray]
Ordered top left part of shape (n_m, n_m) of the real Schur matrix of 𝑃 .

The ordered real partial Schur matrix 𝑅 of 𝑃 fulfills

𝑃𝑄 = 𝑄𝑅

with the ordered matrix of dominant Schur vectors 𝑄.

Return type Optional[ndarray]

pygpcca.GPCCA.schur_vectors

property GPCCA.schur_vectors: Optional[numpy.ndarray]
Array 𝑄 of shape (n, n_m) with n_m sorted Schur vectors in the columns.

The constant Schur vector is in the first column.

Return type Optional[ndarray]

pygpcca.GPCCA.stationary_probability

property GPCCA.stationary_probability
Stationary probability distribution 𝜋 of the microstates.

Vector of shape (n,) which sums to 1.

pygpcca.GPCCA.top_eigenvalues

property GPCCA.top_eigenvalues: Optional[numpy.ndarray]
Top m respective m_max eigenvalues of P.

If a single integer m was given, the upper m eigenvalues are returned.

If a tuple or dict containing a minimum m_min and maximum number m_max of clusters was given, the
upper m_max eigenvalues are returned.

Return type Optional[ndarray]
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pygpcca.GPCCA.transition_matrix

property GPCCA.transition_matrix: Union[numpy.ndarray, scipy.sparse._base.spmatrix]
Row-stochastic transition matrix P.

Return type Union[ndarray, spmatrix]
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CHAPTER

THREE

COARSE-GRAIN A SIMPLE TRANSITION MATRIX

To illustrate the application of pyGPCCA we will coarse-grain a simple irreducible transition matrix𝑃 as a toy example.

Firstly, we will import needed packages like numpy, matplotlib and of course pygpcca:

[1]: import matplotlib.pyplot as plt
import numpy as np
import pygpcca as gp

Next, we define a simple 12× 12 row-stochastic (meaning that the rows of 𝑃 each sum up to one) transition matrix 𝑃
and plot it:

[24]: P = np.array(
[
# 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.
[0.0, 0.8, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], #0
[0.2, 0.0, 0.6, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], #1
[0.6, 0.2, 0.0, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], #2

[0.0, 0.05, 0.05, 0.0, 0.6, 0.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], #3
[0.0, 0.0, 0.0, 0.25, 0.0, 0.25, 0.4, 0.0, 0.0, 0.1, 0.0, 0.0], #4
[0.0, 0.0, 0.0, 0.25, 0.25, 0.0, 0.1, 0.0, 0.0, 0.4, 0.0, 0.0], #5

[0.0, 0.0, 0.0, 0.0, 0.05, 0.05, 0.0, 0.7, 0.2, 0.0, 0.0, 0.0], #6
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 0.0, 0.8, 0.0, 0.0, 0.0], #7
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.2, 0.0, 0.0, 0.0, 0.0], #8

[0.0, 0.0, 0.0, 0.0, 0.05, 0.05, 0.0, 0.0, 0.0, 0.0, 0.7, 0.2], #9
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 0.0, 0.8], #10
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.2, 0.0], #11
],
dtype=np.float64,

)

# plot the matrix P:
fig, ax = plt.subplots()
c = ax.imshow(P)
plt.xticks(np.arange(P.shape[1]))
plt.yticks(np.arange(P.shape[0]))
plt.ylim(-0.5, P.shape[0]-0.5)
ax.set_ylim(ax.get_ylim()[::-1])

(continues on next page)
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(continued from previous page)

fig.colorbar(c)
plt.show()

Following this, we initialize a GPCCA object from the transition matrix 𝑃 :

[3]: gpcca = gp.GPCCA(P, z='LM', method='brandts')

GPCCA is a spectral clustering method with optimized memberships. It clusters the dominant 𝑚 Schur vectors of a
transition matrix. This algorithm generates a fuzzy clustering such that the resulting membership functions are as crisp
(characteristic) as possible.

The parameter z specifies which portion of the eigenvalue spectrum of 𝑃 is to be sought. The returned invariant
subspace of 𝑃 will be associated with this part of the spectrum.

In case of z='LM', the eigenvalues with the largest magnitude will be sorted to the top in descending order. This way
the dominant (top) eigenvalues will be located near the unit circle in the complex plane, unraveling not only stable or
metastable states, but cyclic states that are associated with eigenvalues near the roots of unity as well.

In case of z='LR', the eigenvalues with the largest real part will be sorted to the top in descending order. Thus stable
and metastable states near the Perron root 1 are selected.

The parameter method specifies which method will be used to determine the invariant subspace.

If method='brandts', a full Schur decomposition of 𝑃 utilizing scipy.linalg.schur is performed and afterwards
the returned Schur form 𝑅 and Schur vector matrix 𝑄 are partially sorted to gain an orthonormal basis of the subspace
associated with the 𝑚 dominant eigenvalues of 𝑃 . This is well tested and thus the default method, although it is also
the slowest choice.

If method='krylov', an orthonormal basis of the subspace associated with the 𝑚 dominant eigenvalues of 𝑃 is
calculated using the Krylov-Schur method as implemented in SLEPc. This is the fastest choice and especially suitable
for very large 𝑃 , but it is still experimental.

Afterwards, we can get a list of 𝑚𝑖𝑛𝐶ℎ𝑖 values for numbers of macrostates 𝑚 in an interval [2, 12] of possible 𝑚
(𝑚 = 1 is illegal here, since there is no point in clustering 12 microstates into one single macrostate). The 𝑚𝑖𝑛𝐶ℎ𝑖
values help us to determine an interval [𝑚𝑚𝑖𝑛,𝑚𝑚𝑎𝑥] of nearly optimal numbers of macrostates for clustering:

[4]: gpcca.minChi(2, 12)

[4]: [-1.6653345369377348e-16,
-2.255418698866725e-16,

(continues on next page)
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(continued from previous page)

-0.9923508699724691,
-0.9972757370249341,
-0.926802576904497,
-0.2705117206956666,
-0.3360447945215935,
-0.2973036186306221,
-0.29104047575515346,
-0.42902208201892694,
-3.5809019888001215e-16]

The 𝑚𝑖𝑛𝐶ℎ𝑖 criterion states that cluster numbers 𝑚 (i.e. clustering into 𝑚 clusters) with a 𝑚𝑖𝑛𝐶ℎ𝑖 value close to zero
will potentially result in a optimal (meaning especially crisp or sharp) clustering. Obviously, only 𝑚 = 3 qualifies as
non-trivially potentially optimal, since for 𝑚 = 2 and 𝑚 = 12 always 𝑚𝑖𝑛𝐶ℎ𝑖 ≈ 0 trivially holds.

Now, we would optimize the clustering for numbers of macrostates𝑚 in a selected interval [𝑚𝑚𝑖𝑛,𝑚𝑚𝑎𝑥] of potentially
optimal macrostate numbers to find the optimal number of macrostates 𝑛𝑚 resulting in the crispest clustering in the
given interval.

Here, this interval would contain only 𝑚 = 2, 3, since there is no benefit in clustering 𝑛 = 12 data points into 𝑚 = 𝑛
clusters.

Having said that, we here choose the whole interval [2, 12] of legal cluster numbers to get a better impression of the
spectrum associated with 𝑃 later, when looking at the eigenvalues of 𝑃 :

[5]: gpcca.optimize({'m_min':2, 'm_max':12})

/home/breuter/g-pcca/pyGPCCA/pygpcca/_gpcca.py:999: UserWarning: Clustering into 4␣
→˓clusters will split complex conjugate eigenvalues. Skipping clustering into 4 clusters.
f"Clustering into {m} clusters will split complex conjugate eigenvalues. "

/home/breuter/g-pcca/pyGPCCA/pygpcca/_gpcca.py:999: UserWarning: Clustering into 6␣
→˓clusters will split complex conjugate eigenvalues. Skipping clustering into 6 clusters.
f"Clustering into {m} clusters will split complex conjugate eigenvalues. "

/home/breuter/g-pcca/pyGPCCA/pygpcca/_gpcca.py:999: UserWarning: Clustering into 9␣
→˓clusters will split complex conjugate eigenvalues. Skipping clustering into 9 clusters.
f"Clustering into {m} clusters will split complex conjugate eigenvalues. "

/home/breuter/g-pcca/pyGPCCA/pygpcca/_gpcca.py:1033: UserWarning: Clustering 12 data␣
→˓points into 12 clusters is always perfectly crisp. Thus m=12 won't be included in the␣
→˓search for the optimal cluster number.
f"Clustering {n} data points into {max(m_list)} clusters is always perfectly crisp. "

[5]: <pygpcca._gpcca.GPCCA at 0x7fe440c5f090>

The optimized GPCCA object is returned above and we can now access different properties of it.

Note: pyGPCCA warns that clustering 𝑃 into 4, 6, and 9 clusters would split complex conjugate eigenvalues and thus
skips the optimization for those cluster numbers. Further, pyGPCCA warns that Clustering 12 data points into 12
clusters is always perfectly crisp, i.e. 𝜉 ≈ 1. Thus m=12 won’t be included in the search for the optimal cluster number,
since it will always be selected to be optimal despite there is no benefit from clustering 𝑛 = 12 data points into 𝑚 = 𝑛
clusters.

The crispness values 𝜉 ∈ [0, 1] for numbers of macrostates 𝑚 in the selected interval [𝑚𝑚𝑖𝑛,𝑚𝑚𝑎𝑥] can be accessed
via:

[6]: gpcca.crispness_values
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[6]: array([0.74151472, 0.81512805, 0. , 0.38587154, 0. ,
0.41628049, 0.41788963, 0. , 0.55513151, 0.53758366,
1. ])

The crispness 𝜉 ∈ [0, 1] quantifies the optimality of a clustering (higher is better). It characterizes how crisp (sharp)
the decomposition of the state space into 𝑚 clusters is. Since 𝑚 = 4, 6, 9 were skipped, the associated crispness values
are assigned to zero, because no clustering was performed.

The optimal crispness for the optimal number of macrostates 𝑛𝑚 in the selected interval [𝑚𝑚𝑖𝑛,𝑚𝑚𝑎𝑥] can be accessed
via:

[7]: gpcca.optimal_crispness

[7]: 0.8151280474517894

The optimal number of macrostates 𝑛𝑚 can be accessed via:

[8]: gpcca.n_m

[8]: 3

The optimal number of clusters or macrostates 𝑛𝑚 is the cluster number 𝑚 with the maximum crispness.

A vector containing the top 𝑚𝑚𝑎𝑥 eigenvalues of 𝑃 can be accessed via (here we get the full sorted spectrum of 𝑃 ,
since we chose 𝑚𝑚𝑎𝑥 = 𝑛):

[10]: gpcca.top_eigenvalues

[10]: array([ 1. +0.j , 0.96554293+0.j ,
0.88404279+0.j , -0.48277146+0.48908574j,
-0.48277146-0.48908574j, -0.49366905+0.47392788j,
-0.49366905-0.47392788j, 0.58853656+0.j ,
-0.43198962+0.39030468j, -0.43198962-0.39030468j,
-0.37126202+0.j , -0.25 +0.j ])

A vector containing the dominant 𝑛𝑚 eigenvalues of 𝑃 can be accessed via:

[11]: gpcca.dominant_eigenvalues

[11]: array([1. +0.j, 0.96554293+0.j, 0.88404279+0.j])

An array 𝜒 containing the membership 𝜒𝑖𝑗 (or probability) of each microstate 𝑖 (to be assigned) to each cluster or
macrostate 𝑗 is available via:

[25]: chi = gpcca.memberships
# plot chi:
fig, ax = plt.subplots()
c = ax.imshow(chi)
plt.xticks(np.arange(chi.shape[1]))
plt.yticks(np.arange(chi.shape[0]))
plt.ylim(-0.5, chi.shape[0]-0.5)
ax.set_ylim(ax.get_ylim()[::-1])
fig.colorbar(c)
plt.show()
# show chi matrix:
chi
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[25]: array([[1.00000000e+00, 0.00000000e+00, 8.44548736e-18],
[8.80009662e-01, 5.26338400e-02, 6.73564979e-02],
[9.12351139e-01, 3.84758290e-02, 4.91730323e-02],
[1.64953404e-01, 3.67067094e-01, 4.67979502e-01],
[6.51588802e-02, 3.35927186e-01, 5.98913934e-01],
[6.51588802e-02, 5.64708356e-01, 3.70132763e-01],
[5.02066367e-03, 3.27724659e-02, 9.62206870e-01],
[1.27462550e-16, 1.83492669e-16, 1.00000000e+00],
[1.78878958e-03, 1.11025375e-02, 9.87108673e-01],
[5.02066367e-03, 9.59750248e-01, 3.52290885e-02],
[0.00000000e+00, 1.00000000e+00, 2.42354345e-17],
[1.78878958e-03, 9.86286754e-01, 1.19244563e-02]])

The optimal coarse-grained transition matrix

𝑃𝑐 = (𝜒𝑇𝐷𝜒)−1(𝜒𝑇𝐷𝑃𝜒)

can be accessed via:

[26]: P_c = gpcca.coarse_grained_transition_matrix
# plot P_c:
fig, ax = plt.subplots()
c = ax.imshow(P_c)
plt.xticks(np.arange(P_c.shape[1]))
plt.yticks(np.arange(P_c.shape[0]))
plt.ylim(-0.5, P_c.shape[0]-0.5)
ax.set_ylim(ax.get_ylim()[::-1])
fig.colorbar(c)
plt.show()
# show P_c matrix:
P_c
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[26]: array([[0.88647796, 0.04980224, 0.0637198 ],
[0.00243516, 0.98097945, 0.01658538],
[0.00243516, 0.01543652, 0.98212831]])

There are many more properties that can be accessed as you can see in the API documentation here, e.g.:

The input probability distribution of the microstates:

[14]: gpcca.input_distribution

[14]: array([0.08333333, 0.08333333, 0.08333333, 0.08333333, 0.08333333,
0.08333333, 0.08333333, 0.08333333, 0.08333333, 0.08333333,
0.08333333, 0.08333333])

The coarse grained input distribution of the macrostates:

[15]: gpcca.coarse_grained_input_distribution

[15]: array([0.25843757, 0.36239369, 0.37916873])

An integer vector containing the macrostate each microstate is located in (This employs an absolute crisp clustering,
e.g. 𝜒𝑖𝑗 ∈ {0, 1}, and is recommended only for visualization purposes. You cannot compute any actual quantity of the
coarse-grained kinetics without employing the fuzzy memberships, e.g. 𝜒𝑖𝑗 ∈ [0, 1].):

[16]: gpcca.macrostate_assignment

[16]: array([0, 0, 0, 2, 2, 1, 2, 2, 2, 1, 1, 1])

A list were each element is an array that contains the indices of microstates assigned to the respective (first, second,
third, . . . ) macrostate (This employs an absolute crisp clustering, e.g. 𝜒𝑖𝑗 ∈ {0, 1}, and is recommended only for
visualization purposes. You cannot compute any actual quantity of the coarse-grained kinetics without employing the
fuzzy memberships, e.g. 𝜒𝑖𝑗 ∈ [0, 1].):

[17]: gpcca.macrostate_sets

[17]: [array([0, 1, 2]), array([ 5, 9, 10, 11]), array([3, 4, 6, 7, 8])]

The optimized rotation matrix, which rotates the dominant Schur vectors to yield the GPCCA memberships, i.e. 𝜒 =
𝑋𝐴:
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[18]: gpcca.rotation_matrix

[18]: array([[ 0.25843757, 0.36239369, 0.37916873],
[ 0.03366022, -0.36112468, 0.32746445],
[-0.39024389, 0.164552 , 0.22569189]])

Ordered top left part of the real Schur matrix 𝑅 of 𝑃 . The ordered partial real Schur matrix 𝑅 of 𝑃 fulfills 𝑃𝑄 = 𝑄𝑅
with the ordered matrix of dominant Schur vectors 𝑄:

[20]: gpcca.schur_matrix

[20]: array([[ 1.00000000e+00, 6.38159449e-04, -7.04970784e-02],
[ 0.00000000e+00, 9.65542930e-01, 7.02973961e-03],
[ 0.00000000e+00, 0.00000000e+00, 8.84042793e-01]])

Array 𝑄 with the sorted Schur vectors in the columns (The constant Schur vector is in the first column):

[21]: gpcca.schur_vectors

[21]: array([[ 1. , 0.14326506, -1.88789655],
[ 1. , 0.13739019, -1.58092803],
[ 1. , 0.13889124, -1.66367359],
[ 1. , 0.10015109, 0.24819166],
[ 1. , 0.31120067, 0.52211907],
[ 1. , -0.34824151, 0.46523933],
[ 1. , 1.25811096, 0.75789837],
[ 1. , 1.35867697, 0.77943807],
[ 1. , 1.32450074, 0.77190645],
[ 1. , -1.41382332, 0.52743247],
[ 1. , -1.52373762, 0.53081733],
[ 1. , -1.48638447, 0.52945543]])

Stationary probability distribution 𝜋 of the microstates (a vector that sums to 1):

[22]: gpcca.stationary_probability

[22]: array([0.00356002, 0.00462803, 0.00439069, 0.01803744, 0.03463189,
0.03030291, 0.16883048, 0.14873162, 0.15275139, 0.15584352,
0.13729072, 0.14100128])

Coarse grained stationary distribution 𝜋𝑐 = 𝜒𝑇𝜋:

[23]: gpcca.coarse_grained_stationary_probability

[23]: array([0.02100054, 0.46893777, 0.51006168])
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FOUR

HOW TO CITE PYGPCCA

If you use pyGPCCA or parts of it to model molecular dynamics, e.g. to coarse-grain protein conformational dynamics,
cite [Reuter18] as:

@article{Reuter18,
author = {Reuter, Bernhard and Weber, Marcus and Fackeldey, Konstantin and Röblitz,␣

→˓Susanna and Garcia, Martin E.},
title = {Generalized Markov State Modeling Method for Nonequilibrium Biomolecular␣

→˓Dynamics:
Exemplified on Amyloid Conformational Dynamics Driven by an Oscillating Electric␣

→˓Field},
journal = {Journal of Chemical Theory and Computation},
volume = {14},
number = {7},
pages = {3579-3594},
year = {2018},
doi = {10.1021/acs.jctc.8b00079},
note = {PMID: 29812922},

}

If you use pyGPCCA or parts of it in a more general context, e.g. to model cellular dynamics, cite [Reuter19] as:

@article{Reuter19,
author = {Reuter,Bernhard and Fackeldey,Konstantin and Weber,Marcus },
title = {Generalized Markov modeling of nonreversible molecular kinetics},
journal = {The Journal of Chemical Physics},
volume = {150},
number = {17},
pages = {174103},
year = {2019},
doi = {10.1063/1.5064530},

}

Please also consider to cite the appropriate version of the pyGPCCA package as deposited on Zenodo [Reuter22].
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CHAPTER

SIX

RELEASE NOTES

6.1 Version 1.0

6.1.1 1.0.4 2022-10-31

Fixes

• Fix ‘Operation done in wrong order’ error when calling SLEPc #42.

• Minor pre-commit/linting fixes #39, #40, #41, #44, #45, #46.

• Fix intersphinx numpy/scipy #37.

Improvements

• Update and improve documentation and README #47.

6.1.2 1.0.3 2022-02-13

Fixes

• Fix CI, unpin some requirements, pin docs, enable doc linting #25, #26.

• Patch release preparation #35.

Improvements

• Print deviations, if a test is failing since a threshold is exceeded #29.

• Adjust too tight thresholds in some tests #30, #34.
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6.1.3 1.0.2 2021-03-26

Bugfixes

• Fix not catching ArpackError when computing stationary distribution and mypy-related linting issues #21.

Improvements

• Use PETSc/SLEPc, if installed, to speed up the computation of the stationary distribution #22.

6.1.4 1.0.1 2021-02-01

General

• Minor improvements/fixes in README and acknowledgments.

6.1.5 1.0.0 2021-01-29

Initial release.
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